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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS,
TECHNICAL MEMORANDUM WO, 343,

POTENTIAL FLOW IN ENGINE VALVES, *
By Bruno Eck.

The extensive applicability of the hydrodynamic theory to
the problems of engine construction is clearly shown in the
following attempt to determine by exact methods the nature of
the flow in valves under variously restricted conditions. Ob-
gervation shows that two princiral kinds of flow occur in sim-
tle flat-seated valves. For small valve lifts, the flow is
along the horizontal wall and is therefore deflected 90°, but
for greater valve 1lifts the flow separates and forms a free
stream, whose ancle of deflection naturally increases with in-
creasing 1lift, Roth these kinds of flow can, in fact, bte
theoretically explained.

In order to simplify the flow and render corputation pos-
sible, the following measures are adopted:

1. The whole problem is treated two-dimensionally;

3. The effect of friction is disregarded;

3., It is assumad that the fluid, after lzaving the valve
orening, forms a free stream, which extonds into infinity at
an angles Q, notwithstanding the fact that the space over

the valve h2ad is mostly filled with the samz fluld and that

* Contribution from thz Aerodynamic Institute of the Aachen
Technical High School, reprinted from "Zeitschrift flir angewandte
Mathematik und Mechanik " Vol, IV, 1924, pp. 464-474,
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the fixed walls very quickly set limits to the formation of the

_ Btream. , B .
The theory of discontinuity surfaces evolved by Kirchhoff

and Helmholtz is preferably employed for the solution of two-
aimensional problems of this kind, This theory does not re-
quire constancy of velocity at the points where ths ordinary
theory would regquire a very high velocity, narely, near the
sharp corners of ths body. The very great velocity would, ac-
cording to Berncuilliis equation, demand a very great negative
rressure at these points, which is probably not assumable from
the physical viewpoint for ordinary flulds, Therefore, in or-
der to harmonize such a2 solution with the reality, we can as-
sume that these points are shut out from the flow by a small
circle, or that any slight rounding would necessitate very great
but not infinitely great velocities. ' Kirchhoff stated the
mathematical methods for the convenient application of this
theory to similar special cases., These methods consist chiefly
in finding the conformable diagram of the hodograph on the

plane of the velocity potential, which is always successful when

the rigid walls are flat.

l, Stream fres&n both sides.~ We will first consider a

flow (Fig. 1), which, comwing from infinity (A), is confined by
the parallel walle AB and AE, breaks off at C and E, forms
a free surface and then extende to infinity at an angle «,

The stream is assumed to be confined by a free surface, i.e.,
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the velocity on the boundary is assumed to fall discontinuously
tc zero.* If there is a pressure py in the still fluid, 1t
follows from Bernoullli's equation that the velocity is constant
on the free surface.. If ws put this velocity = 1, 1t denotes
no specialization, but only & simplification of the calculatlon,
shich can be offset by a suitable dispoeition.of the mass units.
From €, through D =, up to E, the velocity is there-
fore 1, while from ths point B, the pressure increases from

0 to 1.

If the potential function of the flow sought is designated
by x =9 + i¥, than dx/dz = u - iv = @ represents the ve-
locity, the direction of the motion being reflected on the x
axis,

Since w for the margin of the flow is known partly by the
abgolute magnitvde znd partly by the direction, we can deter-
mine the limits of the 1w plane (Fig. 3). At B, w =0 and
at C the free surface begins (i.e., w = 1), 80 that the lim-

itg of the free surface must lie on the unit circle and de-

* You are here referred to the wvaluable works of 8ir G. Green-
hill, British Advicory Committse for Aeronautics, No. 1€, 1910,
"Theory of a Streamline Past a Plane Carrier and of the Discon-
tinuity Arising at the Edge," which gives quite a complete list
of 21l the kincs of flow occurring in this field, along with
their diagraomatic treatmens,

R. von Mises ("Zeitschrift des Vereines Dautscher Ingenisure,"
1917, pp. 447 £f, "Berechnung von Ausfall und Ueberfallzahlen")
h>d previously discusased this problem thoroughly and had in
fact, calculated the coefficients for the form of flow here con-
gidered,
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scribes the quadrant from C to E, From E to &, uw =0 and

v falls from 1 to d certain value k¥ which we will provision-
ally assume to be less than i. From A to B, u =0, so that
the whole flow in the w plane is portrayed by a quadrant.

The connection between x = ¢ + iV and w=1u - iv fol-
lows from dx/dz = w. This is a complex differential equation,
the solution of which is decisive for our problem. In our so-
lufion, we find x = fz and utilize the differential equation

for finding this expression, by first obtaining x =g & and

PRt

then finding 2z = w

by an integration, An expression for
the function x, similar to the one for w, 1is indeed known,
since its limwite can zleo be Ziven. In the theory of func-
tions, the conformable diagram affords a convanient methold for
finding x = g w. ‘

For the further calculetion, it is more convenient to work
with the natural logarithm ¢f w instead of wsith w 1tsclf,

a simplification 2lso employed in the cases subsequently treated
(Fig. 3).

The further calculation is =s follows., The strip BCEAB
is plotted on 2 half-plane, so that the boundary falls on the
real axis, The egame thing harpens with ths potential .plane x.
These half-planes are then so superrosed that the correspond-
ing points coincide, by which operation the function x =g w
is found,

The plotting of BCEA on the half-plane (Fig. 4) is ac-

complished by means of Christoffel's integral
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sz' - s

an assertion which can be easily verified by remembering that

wo=w + 1% =g + B',

dw! _— 1
dZ' (Z' + C0)1./2 (Z' _ 50)1/2

arc

ie increased by /2 at the points ¢, After determining

the constants, we obtain

Q w2

Plotting the rotential on the half-rlane.- The boundary

lines ABCD =and AED form streamlines between which the whole
gtream flows (Fig. 5). The potential is thus plotted on =a
strip V¥p - Vg . This differencs is, at the same time, the
arount of the fluid flowing through. In order %o have a defi-
nite case in mird, we put V¥r - Vg = m, By mezns of

D+iv

= e this strip is plotted on the half-rlane, so that

z B comes after -1, A comss after O and D remains in
infinity.

If we now establish, by 2 linear transformation, a connec-
tion betwzen the two half-planes, so that corresponding points
coincide, we obtain the function x = f w., In the expression

1o+ :
2%5—1—%’ we determine the constants a, b, ¢, so that

zZ =
z' =B after #» and z' =A = - (1% (kK® + %&) after

z2 =0 and thus obtain
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4
z! + Col-’a' K +§.l

3 K
zZ = -Z"‘f'C )
4
or with the insertion of A = 5~E§~l and -3 %— = |
o
z = - g: : zg: : i or, since gz = ePriV
. W% + AwR + 1 '
= =
s iy log o (1)

The importance of u is due to the fact that the points
P+ iy = o must have known velocity values, With this con-
dition, we find that W = - 2 cos 2a,, in which @ is the
ingle formed by the stream ininfinity with the x axis,.

The parameters occurring in the solution, with which we
can satisfy the prescribed geometric conditions of flow, are
egpecially imrortant., It is obvious that they must be connect-
ed with the physical properties of the flow. It is in fact ap-
parent from equation (1) that only the two following parame-
ters occur:

1l. The ratio of the velocities at A -and D equals K}
3. The angle a, which the stream in infinity forms with

the x 4axis,

Since the three quantities b, h and r = BC must be deter-

1]

mined, only the relations n = h/b and m = r/b - 1, obtained

by two integrations, can be involved. The relation betwesn
wand x 1is established through equation (1), From 9 . g

dz
it follows that dz = %’E and z =/ gin dT;"’, which i simpli-
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fied by the elimination of dx, since dx/dw is known,

% 4 g o+ 3N % 4 @R+ 2
2 = dw - (2)
w{ wt + A o+ 1 w{ w* + W + 1 ‘

Zero and unity are the integration limits for =r and h.

We obtaln
2 -1 18 1 + cosa .
r =23 " arc tank + & + cosa log T oesg - T sing,
Ll LI L i . 1+ sim
h=3 K log y=—% + % * imcosa - 1 sina log T~ ging

For the relations m = % -

ol

1 and n =3, we obtain, by

taking into consideration for hy = b + 1 h only the imaginary

component
- 1 - k*® cosa 1+ cosa _ a4 3
mw = - 2 ""—_‘—“—ﬂ aArc tanK +K{ T log —l—:'.—o'—o——‘—sa si1na ( )
=1+ k2 1+K sina 1+ sina
=y log 1 -k 5 {OOSQ - m 1°8 T 5ina (4)

Equations (3) and (4) represent the solution of the first
problem. They always go together, so that here we have a set
of equations with three unknown quantities. If, for example,
an overlarping m is stipulated, m must be introduced into
equation (3), then the values of k and & which satisfy equa-
tion (3) must be determined and then these values must be in-
troauced into equation (4), from which we obtain the valve-
1ift n. This procedure must be followed for all values of
kK o which satisfy equation (3).

Such a computation would be very tedious and the determi-
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mtion of the relations for any desired variation of m would

.mean much work, It was therefore a great advantage that the

epecial form of equations (3) and (4) (which could be written
in the form m = - f, R+xg a and n = f, K + K g o) allowed
the employment of nomographic methods, by means of which it was
rossible to find the corresponding K, o and n for m from
O too which were then combined in the following manner,

) Velocity plotted against the valve-lift.- n = f K

(Fig, 8). K increasgs alwost linsarly at first and, with in-
creasing n, aprroaches asyrptotically the value 1, It is
noticeable that all the curves m = const, 1lie very close to-
gether, so that any change in the overlapping has but little
csffect on the velocity. For the valve-lifts occurring in prac-
tice up to n =1, the n curve closely aprroximates a straight
line,

b) a =gk (Fig, 7).- The overlarping has, as was to be

expe cted, a greater effect on &, For small values of m,

o increases with relative rapidity and tends toward a limit,
ag n incrsases, This 1limit falls for larger values of m,
s0 that at m = = only <« =0 1is possible., It is noteworthy
that, with positive overlappings, the maximum attainable angle
is 38°,

¢) Coefficient of contraction (Fig. 8).- It can be readily

shown that a criterion for the contraction of ths emergent
stream is given by M = g, when & denotes the thickness of

the stream, The course of these values indicates a very slight
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édependence on m, For very small values of k, a is found, by

computing the limiting value for m, to have the value ﬁrg—g .
This isvthénfmanifestly identical with Kirchhoff's case of the
flow from an infinitely long slit.

d) The pressure-loss coefficient ¢ = ;—i;ﬁi was also
rlotted (Fig. 9). 1Its curves are very slightly affected by m

and are strongly hyperbolic.

3., Stream fres on only one side.- For very small valve-

lifts, as mentionad in the introduction, the experiments showad
a flow, which did not separate at the point E, but was de-
fle cted 90° (Fig, 10)., It was found that, =ven mathematically,
such a flow exists, which is treated in what follows. The free
surface is assured tc begin at €, whose angle o' with the x
axis increases to a maximum value o at the point ¥ and then
againin infinity attains the value a' = 0. The question here
is not therefore concerning an entirely free stream, but con-
cerning a stream which is bounded on one sids by a fixed wall
and on tne other by a free surface,

The intercsting problem now aris2s as to shether all con-
¢itions of flow, which can occur physically in a configuration
like ths flat valve have already besen exhaustsd in the fore-
going casss, It is, in fact, possible to carry out an investi-
gation of this kirnd, which b3are principally on the subjsct of
tha log w plane. The hereby mathematically possible casee

are not always physically rossible.
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If we obtain, for example, a margin of the log w tlane,

~ where the limits have no neighboring infinite streamlines,

then this naturally hae no further physical significance, even
though it may still be of some interest as 2z theoretical func-
tion., Without contiming this diacussion, it may be mentionsd
that only one other flow is possible in the above case (Fig.
11). Here also the stream berds 90° at E and follows the
horizontal wall, which it leaves, however, at E! where the
free surface begins, The angle o' then gradually increases
until it reaches its maxiyum at D =, On the other side,

the angle decreasee until it reaches the value o =0 at OC.
The mathematical treatment of the last two cases is very similar
and they will therefore be considered side b; side. For the
purpose of distinguishing them, the first will be designated by
IIa, 2rd the second by IIb. The rrinciple of the calculation
is essentially coversed in Section 1, 21lthough the difficulties
are much greater here. It 1is easily seen that the velocity
range of Ila and IIb is represented by a "quarter-plane" (Fig.
18), which is cut along the unit circle from C te F and back
te D, The angle CBF 1is the maximum angle a, Thea lecg w
plane is obtained in a corresponding mananer (Fig, .13). The
difference between IIa and IIb consists in the fact that sever-
al conspicuous points are shifted, a clrcumstance which is
first manifested by the diagram of the potential half-plane on
the velocity-potential vlane. The diagram of the log w plane

on the half-rlane might even here be accomplished by the Chris-



¥.A.C,A. Technical Memorandum No, 343 11

toffel integral, but the purely formal difficulties are consid-
erably greater than by the following method. The problem can
here be more oonveniently solved by thres auxiliary diaerams,
which successively show the log w strips on a slotted half-
rlane and on an unselotted half-plans,

The strip of the 1log w plane on a half-plane is repre-

s .
sented by 2z = //i + Eiggfg, which is cut out along the imagi-
N sl

nary axis from Egza to » (Fig. 14), A reflection on the

unit circle z = 1 shifts the slot from = to O ané from
i

tana

to -i tana is finally depicted on the half-plane (Fig. 18) by

to -i tana (Fig. 15). The half-plane slotted from O

the third diagram ¢° = tar®x (£° - 1). On eliminating the in-
dividual steps, we find, for the diagram of 1log w plane on
the h=lf plans, the function

£2 = cos? w _ cos® {(log w)
cos?w - zos®a cos®(loz w) - cos?a

The potential planes dericted on the half-plans by
8§, = %1 or g; = eX2 are covered by a linear transformation,

so0 that every three corresponding points coincide. The ex-
f+a,
+ b,

rressions s, = ... and B8, = ... ¢t = and
1 fo
T+ aj
fcz + bg

the individual auxiliary variables) to the equations

1
lead (after detemmining the constants and eliminating

cos (log w) + 1 - k® o)
eX1=¢ o/ cos®(log w) ~ cos®a -/ (1 - k¥ )? + 4% cosRa 5)
cos (log w) 1

J cos® (log w) - cog2a  8inc
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o oyf oo Ulogw e
L,\/cos2 (log w) - cos2a /(l — B & 4k® cog?

The staterents in qection 1 concerning parameters apply
here unchanged, slnce only kK and o occur, with which the 4i-
mensions can be determined again. In particular the inte-rals
Z =f%1—c must be again @lculated here, The very difficult
determination of these integrals wae made possible by the

choice of the f plane for the integration

dx 1l dx ~w 4x
= — = - —_— = —_— To
z =f - S - : df =/ e 37 AL
since w = el®,
Flow Ila: z = f -{—f—_-,_—gg?’_‘_?f /1 - f%sip®a ) f 1 - .1 }df,
VS ERAL f2- 1 'Y + fa f-_L1 -

Flow IIb: =z = / {f cosa_ /ﬁ1 - fZsinc ) 1 af.
C/e31 2 -1 J £+ Fa
It is obvious that the integrals are composed of elementary
components and elliptical integrals of the first, second and
third kinés. We will nobt go farther into the very troublesome

calculations and will only give the result.
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L = %-cosa log<cotan %}— légé arc cos T§%§§%§§%‘— %Sir&_éTT%Esgﬁ\
* 1Tsin&§acos ) ‘% + (F-E) (F(8,k") - F E(G,k')}
- £ cosx lox <3otan %} + % log si%a," % sina.(F - %)

n = kK cosa + l—ﬁ;ﬁi~{f EM-T f(P)}-— K cosa + K — %; sina F

(7)

All the equations apply to the flow IIa and the equation
without underlined terms 2arrlies also to IIb, The individual
constants have the following values:

2
=Ky F =/ ae

2
fa 1l - K 7 tan %
© Jﬁi—cosﬁa sin?®

,\/ (1- K"))g +4¢2 cog2

V&S
po= [ /i—cosza sin®p 49
o N

.

‘ e
F(6,%') / ——22 —; E(8,k')=/ ,/l-cos2a sin®® d ¢
© /l-cos®a sir®y o T
T/ = T/ 2
- a0 o . |
F - E = ™ ¢20L ¥
o/ l-sin2a sin?9 df N/l sinca sirRp 4@
I P
- 5 3
F(IY =/ d g . E(M)- J JToeTeRe eimee a0
o /l-sir?a sin29p o
I o= 1 ;
Tan tan @ cosx

For the calculation of the forces acting on the valve head,
e rethod is employed whi ch is similar to that for the calcula-

tion of r and h. According to Rernouilli's theoremr, we ob-

-

-
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tain for ths difference in pressure between a point below and a
X
2g
sure is then given by the integration

point above the valve head, Ap = (1 - w®)., The total pres-

P! = (L - w?) ds,

62
ol

whereby the facstor 1/b rust be added for a reason already
rentioned. The first surmand is 1 + 1, while the second part

leads to the integral

ps = 1 f[f cosa 4 l—fzsina} 1 gf
bl gty .offa £ + fa

The calculation gives:

N, 2 s
P* = £ cosa log<ootan g) - L =% arc cos f2 - 8ina
m 2T 1 - fa sina
+ K s 1 - 3k K fa m PoEYT(E Rt t
2 sinc + 4 b sinevcose‘{B + (F-E)F(6,k")-F E(O,X )}

1 - cosa L . ( TN
+ - '

cosa log sina log sina | sina(F 3/

the underlined terws drorping out for flow IIb.

For flow I the calculation of the forces is considerably
sirrler, since it can be rade acocording to the law of momentum.
The forces acting on r are corrosed of:

1., The pressure difference

Y

2
b_g-g(l"K):

to infinity on both sides for the width bs

Y

2. The deflection pressure (kK - sind) TTE, since W is volune
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flowing through per unit of time,
In order to obtain again nondimensional coefficients in
accord with the previous researches, we further expand this

with 1/b and obtain

2
P = l—:gi— + K (K - sina) (omittingté).

3., Corbining the results.- The values of n, m and p must
now be ocalculatad in terms of k¥ and o whereby it must be
borne in mind thst the eguations for mand n can be solvad
only in conjunction and that only their solution accurately de-
termines the flow, If we then take from these equations the
corresponding values of K and o and introduce them into P,
we thus obtain the wvalue of P, The rather complicatsd form in
which P, n, m are comwbined with X and a, necessitates
rather troublesome zraphic and mathematical evaluations, whose
results ars rerresentad in curves, with PIIa’ PIIb’ Tiy1gs
Wrrys  Dirg and Nyqp 28 orcéinates and o as the abscissa,
Herein the curves Kk = constant for K =0, 0.1 ........ 1
were introduced (Figs. 17-23).

From the curves for m, it is immediately obvious that
the whole flow in the cases IIa and IIb is confined to rela-

tively small angles., In IIb the angles are about twice as
large as in IIa. The sets of awrves for h and n show, in
cagse IIb, that for small angles, the valve 1ift is almost inde-
menaent of o and K, while this i1s not so much the case in

ITa, The latter curves hold good in the region down to about
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200, glnce, from there jown, a term appears which was neglected
in the calculation, |

It is easily seen that the flow in the limiting cases is
inorder, For large overlappings the angle is very small and
finally becomes o = 90°, at m =, At m =1 (i.e.,, in the
case where the channel is wide open), it is easily sesn from
the equdtions for m, that kK =1 and a = 900. In constant
overlaprplings, Kk also incrzases with increasing o, eo that
o Teaches its aprarent maximum at & = 1, For positive over-
larpings, the maxrum angle is opax = 140 in case IIb and
Omax = 8° in Ila, Each overlapping atteins a maximum angle
at Kk = 1, ‘

The courss of m with negative overlappings is Qquite dif-
ferent from what it is with positive overlaprings. The indi-
vidual curves alternately cross one another so that, with in-
creasing K, a first increases, reaches 2 maximum and then
sinks again to K = 1, As to whether such a flow actually ex-
ists, cannot be maintained without further investigation.

Since this somewhat resembles the behavior of a throttle valve,
but does not concern valve flows, 1t was not investigated
further,

In what follows, the Qquantities in question were determined
for several overlappings. Since the valves in use show over-
lappings of m = 0-0.6, there were investigated: m = 0; 0.05;
0.1l; 0.2; 0.3; 0,6, The corresponding values of K, o, etc,,

are obtained in the following manner. In the m diagram, for
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m = constant, a line is drawn parallel to the o axis. This
line intersects-the curve -at points, each of which determines
two values Kk and o  These points are now introduced into the
h diagrams and thus the course of the valve 1ift is plotted
against o. Hence the result is the same here as in the case
treated in Section 1. We obtain, for constant overlappings, a
diagram of a set of three values of a, Kk and h, ¥rom the h
curves, it is obvious that they run very closely in proportion
with o and k.

The angle& of deflection o of the flow is very small in
both Ila and IIb, The m diagrams exhibit, for the customary
overlappings, values up to o equals about 10°, All the remain-
ing problems with regard %o the different kinds of flow can be
solved with the aid of the computed curves. A knowledge of the
aistance EE!' 1is also important for the flow IIb, This dis-
tance rmust be determined again by integration. The following
modification of EE' occurs with the valve 1lift, EE! = « for
n = 0; EE! decreases, as h increases, reaches a minimum and
then increases again, It is easy to determine that, from the
minimum on, there is a flow against pressure. The fact is
mathematically important that the variability of EE!' demon-
strates that a2 flow, in which EE!' 1is obtained by construction,

does not necessarily exist.

4. Distinguishing between the two kinds of flow.,— After

the three flows have been successfully calculated from all sides,
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there arisss the important questions as to which kind of flow
occurs in 2 given instance, whether there are circumstances un-
der which two different kinds of flow can occur, etc. For small
overlappings, the forces for case I show a slight decrease, but
then a gradual increase with the wvalve 1ift, For greater over-
lappings, the forces increase continuously, though very slowly.
Cases IIa and IIb (Figs. 21-32) exhibit great similarities, The
forces decrease very rapidly, reach a minimum at n = 1 (about)
and then increase rapidly. It is now necessary to consider

the equilibrium of a valve head actuated by a spring. The

power curve of the spring is always an ascending line., Equilib-
rium occurs at the roint where the nowsr curve of the spring
intersects the pressure curve, There are two possible cases,
Either the power of the spring decreases faster than the pres-
sure or vice versa, Only the former case is stable, since the
disturbance of the equilibrium there generates forces which

tend to restore the original condition (Fig. 24). 1In this
sense, it is easily recvugnized that the flows IIa and IIb are
stable under all ccnditions down to the minimum, beyond which no
definite statement can, however, be made. The flat coureesof
the forces in cage I (¥ig. 233) drmonstrates that the flow is to
be considered stable throughout. It is easily understood that
only the flows II can occur at small valve lifts, because of the
otherwise very great velocities., Other conditions will, how-
ever, arise, if the valve head is held rigidly and given no

freedom of motion, an arrangement on which were based the exper-
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iments recently performed by Schrenk in Darmstadt. He obssrved
the noteworthy phenomenon that, on lifting the valve head, flow
IT occurred first and then changed suddenly to flow I.

It is a question as to what the physical reason is for
the fact. that, with a certain valve 1ift, instability occurs
when there is no spring, 28 in Schrenk's arrangement. It is
not to be assumed that the course of the forces acting on the
valve head, as stated above, has any effect on this phenome-
non, although the minimum force at a valve 1ift is of Ehe same
drder of magnitude as that of Schrenk in the rough calculation
of the flow.

It is more probable that the friction on the stationary
wall is responsible for this phenomenon., From the point E
on, the velocity along the wall decreases from n =« to
n =1 in infinity. In an actual fluid, the flow along a sta-
tionary wall is such that, 2s a result of the friction, the
fluid adheres to the wall and the velocity then gradually in-
creases up to the value which follows from the potential flow,
The layer in which this increase occurs is very thin and 1is
called the boundary or marginal layer. If, as in the above
case, the fluid flows along a well with increasing velocity,
then the particles in fhe boundary layer come to rest much
sconer than the more distant ones., The pressure increase
therefors takes rlace much more quickly in the boundary layer,
A point is finally reached where the pressure in the boundary

layer even generates a counter-current. In most casss, the
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flow then detaches its2lf, a rhenomenon which is known -from the
diffuser.- Similar relations 2lso exist here. It is interesting
that the roints of the detachment of the Schrenk flow, plottzd
to scale, lie approximately in 3 straight line at an angle of
25°, It is therefore very natural, in connection with the
Schrenk flow, to think of a diffuser in which the flow detaches
. itself. It is very difficult to treat this rroblem mathematic-
ally., We can determine approximately the course of the veloc-
ity along the horizontal wall and find a dependence according
to the -1/3 power, on account of the flow at an angle of 900.
It is, however, doubtful as to whether the pressure changes
with the velocity and finally becomes -o in the angle. For
this case, the rethods of the Prandtl theory of a boundary

layer fail completely, because they assume a constant pressure.

Translation by Dwight ¥. Miner,
National Advisory Committee
for Aerconautics,
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